Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.742
Filtrar
1.
Biochem J ; 481(7): 515-545, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38572758

RESUMO

Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.


Assuntos
Peptídeo Hidrolases , Ubiquitina , Humanos , Ubiquitina/genética , Ubiquitina/metabolismo , Peptídeo Hidrolases/metabolismo , Ubiquitinação , Processamento de Proteína Pós-Traducional , Ubiquitinas/genética , Ubiquitinas/metabolismo , Dano ao DNA , Endopeptidases/metabolismo , Instabilidade Genômica
2.
Physiol Plant ; 176(2): e14240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38561015

RESUMO

Under stress conditions, plants modulate their internal states and initiate various defence mechanisms to survive. The ubiquitin-proteasome system is one of the critical modules in these mechanisms, and Plant U-Box proteins play an important role in this process as E3 ubiquitin ligases. Here, we isolated the Plant U-box 24 gene CaPUB24 (Capsicum annuum Plant U-Box 24) from pepper and characterized its functions in response to drought stress. We found that, compared to the other CaPUBs in the same group, the expression of CaPUB24 was significantly induced by drought stress. We also found that CaPUB24 was localized to the nucleus and cytoplasm and had E3 ubiquitin ligase activity. To investigate the biological role of CaPUB24 in response to drought stress further, we generated CaPUB24-silenced pepper plants and CaPUB24-overexpressing Arabidopsis transgenic plants. CaPUB24-silenced pepper plants exhibited enhanced drought tolerance compared to the control plants due to reduced transpirational water loss and increased abscisic acid (ABA) sensitivity. In contrast, CaPUB24-overexpressing Arabidopsis transgenic plants exhibited reduced drought tolerance and ABA-insensitive phenotypes. Our findings suggest that CaPUB24 negatively modulates drought stress response in an ABA-dependent manner.


Assuntos
Arabidopsis , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Secas , Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
3.
Cell Mol Life Sci ; 81(1): 169, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589732

RESUMO

Rhes (Ras homolog enriched in the striatum), a multifunctional protein that regulates striatal functions associated with motor behaviors and neurological diseases, can shuttle from cell to cell via the formation of tunneling-like nanotubes (TNTs). However, the mechanisms by which Rhes mediates diverse functions remain unclear. Rhes is a small GTPase family member which contains a unique C-terminal Small Ubiquitin-like Modifier (SUMO) E3-like domain that promotes SUMO post-translational modification of proteins (SUMOylation) by promoting "cross-SUMOylation" of the SUMO enzyme SUMO E1 (Aos1/Uba2) and SUMO E2 ligase (Ubc-9). Nevertheless, the identity of the SUMO substrates of Rhes remains largely unknown. Here, by combining high throughput interactome and SUMO proteomics, we report that Rhes regulates the SUMOylation of nuclear proteins that are involved in the regulation of gene expression. Rhes increased the SUMOylation of histone deacetylase 1 (HDAC1) and histone 2B, while decreasing SUMOylation of heterogeneous nuclear ribonucleoprotein M (HNRNPM), protein polybromo-1 (PBRM1) and E3 SUMO-protein ligase (PIASy). We also found that Rhes itself is SUMOylated at 6 different lysine residues (K32, K110, K114, K120, K124, and K245). Furthermore, Rhes regulated the expression of genes involved in cellular morphogenesis and differentiation in the striatum, in a SUMO-dependent manner. Our findings thus provide evidence for a previously undescribed role for Rhes in regulating the SUMOylation of nuclear targets and in orchestrating striatal gene expression via SUMOylation.


Assuntos
Proteínas Nucleares , Ubiquitina , Ubiquitina/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/genética , Sumoilação , Expressão Gênica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
4.
Parasit Vectors ; 17(1): 190, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643149

RESUMO

BACKGROUND: Cystic echinococcosis (CE) is a widespread zoonosis caused by the infection with Echinococcus granulosus sensu lato (E. granulosus s.l.). CE cysts mainly develop in the liver of intermediate hosts, characterized by the fibrotic tissue that separates host organ from parasite. However, precise mechanism underlying the formation of fibrotic tissue in CE remains unclear. METHODS: To investigate the potential impact of ubiquitin-conjugating enzymes on liver fibrosis formation in CE, two members of ubiquitin-conjugating (UBC) enzyme of Echinococcus granulosus (EgE2D2 and EgE2N) were recombinantly expressed in Escherichia coli and analyzed for bioinformatics, immunogenicity, localization, and enzyme activity. In addition, the secretory pathway and their effects on the formation of liver fibrosis were also explored. RESULTS: Both rEgE2D2 and rEgE2N possess intact UBC domains and active sites, exhibiting classical ubiquitin binding activity and strong immunoreactivity. Additionally, EgE2D2 and EgE2N were widely distributed in protoscoleces and germinal layer, with differences observed in their distribution in 25-day strobilated worms. Further, these two enzymes were secreted to the hydatid fluid and CE-infected sheep liver tissues via a non-classical secretory pathway. Notably, TGFß1-induced LX-2 cells exposed to rEgE2D2 and rEgE2N resulted in increasing expression of fibrosis-related genes, enhancing cell proliferation, and facilitating cell migration. CONCLUSIONS: Our findings suggest that EgE2D2 and EgE2N could secrete into the liver and may interact with hepatic stellate cells, thereby promoting the formation of liver fibrosis.


Assuntos
Equinococose , Echinococcus granulosus , Doenças dos Ovinos , Animais , Ovinos , Echinococcus granulosus/genética , Enzimas de Conjugação de Ubiquitina/genética , Equinococose/parasitologia , Cirrose Hepática , Ubiquitinas/genética , Genótipo , Doenças dos Ovinos/parasitologia
5.
Mol Med ; 30(1): 50, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622518

RESUMO

BACKGROUND: Colorectal cancer standed as a global health challenge, ranking third in cancer incidence and second in cancer-related deaths worldwide. A deeper understanding of the intricate mechanisms driving colorectal cancer development was pressing need. STK16 had garnered attention in recent researches, while its involvement in cancer had been minimally explored. c-MYC had emerged as a key player in cancer biology. Due to its complex structure, multifunctionality, and intricate interactions, directly inhibiting the activity of c-MYC proves to be challenging. Hence, current research was directing efforts towards modulating c-MYC expression levels. METHODS: Immunoblot, Immunohistochemistry and immunoprecipitation assays were conducted to assess the indicated protein expression levels. RT-PCR was performed to detect the corresponding mRNA expression levels. The proliferation, migration, invasion, and colony formation abilities of the specified cancer cells were investigated using CCK8 assays, Brdu assays, transwell assays, and colony formation assays, respectively. Cellular and animal experiments were performed to investigate the correlation between STK16 signaling and c-MYC signaling. RESULTS: STK16 plays a positive regulatory role in the progression of colorectal cancer. Delving into the molecular mechanisms, we unveiled that STK16 phosphorylated c-MYC at serine 452, a pivotal event hindering the ubiquitin-proteasome pathway degradation of c-MYC. Importantly, colorectal cancer proliferation mediated by STK16 was found to be dependent on the phosphorylation of c-MYC at S452. Furthermore, the researchers demonstrated that STK16 knockout or pharmacological inhibition significantly curtailed colorectal cancer proliferation and c-MYC expression in in vivo animal models. CONCLUSION: We discovered that STK16 phosphorylates c-MYC at serine 452, hindering its degradation via the ubiquitin-proteasome pathway. STK16 inhibition, either genetically or pharmacologically, effectively curtails cancer growth and c-MYC expression in vivo. These findings highlight STK16 as a potential therapeutic target for colorectal cancer.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Animais , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Serina/metabolismo , Ubiquitinas/genética
6.
Signal Transduct Target Ther ; 9(1): 85, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575611

RESUMO

NEDD8 (Neural precursor cell expressed developmentally downregulated protein 8) is an ubiquitin-like protein that is covalently attached to a lysine residue of a protein substrate through a process known as neddylation, catalyzed by the enzyme cascade, namely NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). The substrates of neddylation are categorized into cullins and non-cullin proteins. Neddylation of cullins activates CRLs (cullin RING ligases), the largest family of E3 ligases, whereas neddylation of non-cullin substrates alters their stability and activity, as well as subcellular localization. Significantly, the neddylation pathway and/or many neddylation substrates are abnormally activated or over-expressed in various human diseases, such as metabolic disorders, liver dysfunction, neurodegenerative disorders, and cancers, among others. Thus, targeting neddylation becomes an attractive strategy for the treatment of these diseases. In this review, we first provide a general introduction on the neddylation cascade, its biochemical process and regulation, and the crystal structures of neddylation enzymes in complex with cullin substrates; then discuss how neddylation governs various key biological processes via the modification of cullins and non-cullin substrates. We further review the literature data on dysregulated neddylation in several human diseases, particularly cancer, followed by an outline of current efforts in the discovery of small molecule inhibitors of neddylation as a promising therapeutic approach. Finally, few perspectives were proposed for extensive future investigations.


Assuntos
Proteínas Culina , Neoplasias , Humanos , Proteínas Culina/metabolismo , Ubiquitinas/genética , Ubiquitina-Proteína Ligases/metabolismo , Processamento de Proteína Pós-Traducional , Neoplasias/tratamento farmacológico , Neoplasias/genética
7.
Plant Physiol Biochem ; 207: 108414, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324954

RESUMO

The ubiquitin/proteasome system plays a crucial role in the regulation of plant responses to environmental stress. Here, we studied the involvement of the UBC1 and UBQ2 genes encoding a ubiquitin conjugating enzyme (E2) and ubiquitin extension protein, respectively, in the response to salt stress. Our results showed that the constitutive expression of tobacco NtUBC1 and NtUBQ2 in Arabidopsis thaliana improved salt tolerance, along with the lower Na+ level and higher K+/Na+ ratio compared to control plants. Moreover, the expression levels of sodium transporters, including AtHKT1 (High-Affinity K+ Transporter1) and AtSOS1 (Salt Overly Sensitive 1), were higher in NtUBC1- and NtUBQ2-Arabidopsis. However, the transcript level of AtNHX1 (Na+/H+ Exchanger 1) was similar between control and transgenic plants. After salt exposure, the activity of the 26S proteasome markedly increased in NtUBC1- and NtUBQ2-expressing plants; however, ubiquitinated protein levels decreased compared to control plants. Furthermore, higher activity of antioxidant enzymes and lower ROS production were observed in UBC1- and UBQ2-expressing plants. We further challenged atubc1, atubc2, and atubq2 single mutants and atubc1ubc2 double mutant lines with salt stress; interestingly, the salt sensitivity and sodium levels of the studied mutants were enhanced, while the potassium levels were reduced. However, the atubc1ubc2 double mutant illustrated a more severe phenotype than the single mutants, probably due to the redundant function of UBC1 and UBC2 in Arabidopsis. Taken together, NtUBC1 and NtUBQ2 enhance salt tolerance by enhancing 26S proteasome activity and reducing Na+ accumulation, ROS, and ubiquitinated/salt-denatured proteins.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Tolerância ao Sal/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética , Tabaco/genética , Sódio/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Regulação da Expressão Gênica de Plantas
8.
mBio ; 15(4): e0023224, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38411954

RESUMO

Neddylation is a type of posttranslational modification known to regulate a wide range of cellular processes by covalently conjugating the ubiquitin-like protein Nedd8 to target proteins at lysine residues. However, the role of neddylation in malaria parasites has not been determined. Here, for the first time, we showed that neddylation plays an essential role in malaria transmission in Plasmodium berghei. We found that disruption of Nedd8 did not affect blood-stage propagation, gametocyte development, gamete formation, or zygote formation while abolishing the formation of ookinetes and further transmission of the parasites in mosquitoes. These phenotypic defects in Nedd8 knockout parasites were complemented by reintroducing the gene that restored mosquito transmission to wild-type levels. Our data establish the role of P. berghei Nedd8 in malaria parasite transmission.IMPORTANCENeddylation is a process by which Nedd8 is covalently attached to target proteins through three-step enzymatic cascades. The attachment of Nedd8 residues results in a range of diverse functions, such as cell cycle regulation, metabolism, immunity, and tumorigenesis. The potential neddylation substrates are cullin (CUL) family members, which are implicated in controlling the cell cycle. Cullin neddylation leads to the activation of cullin-RING ubiquitin ligases, which regulate a myriad of biological processes through target-specific ubiquitylation. Neddylation possibly regulates meiosis in zygotes, which subsequently develop into ookinetes. Our findings point to an essential function of this neddylation pathway and highlight its possible importance in designing novel intervention strategies.


Assuntos
Plasmodium berghei , Ubiquitinas , Animais , Ubiquitinas/genética , Ubiquitinas/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas Culina/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
9.
Proc Natl Acad Sci U S A ; 121(10): e2310756121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408252

RESUMO

Stress conditions can cause the relocalization of proteasomes to condensates in yeast and mammalian cells. The interactions that facilitate the formation of proteasome condensates, however, are unclear. Here, we show that the formation of proteasome condensates in yeast depends on ubiquitin chains together with the proteasome shuttle factors Rad23 and Dsk2. These shuttle factors colocalize to these condensates. Strains deleted for the third shuttle factor gene, DDI1, show proteasome condensates in the absence of cellular stress, consistent with the accumulation of substrates with long K48-linked ubiquitin chains that accumulate in this mutant. We propose a model where the long K48-linked ubiquitin chains function as a scaffold for the ubiquitin-binding domains of the shuttle factors and the proteasome, allowing for the multivalent interactions that further drive condensate formation. Indeed, we determined different intrinsic ubiquitin receptors of the proteasome-Rpn1, Rpn10, and Rpn13-and the Ubl domains of Rad23 and Dsk2 are critical under different condensate-inducing conditions. In all, our data support a model where the cellular accumulation of substrates with long ubiquitin chains, potentially due to reduced cellular energy, allows for proteasome condensate formation. This suggests that proteasome condensates are not simply for proteasome storage, but function to sequester soluble ubiquitinated substrates together with inactive proteasomes.


Assuntos
Proteínas de Saccharomyces cerevisiae , Ubiquitina , Animais , Ubiquitina/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/química , Saccharomyces cerevisiae/genética , Ubiquitinas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/química , Mamíferos
10.
Int J Oncol ; 64(4)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38391033

RESUMO

Neddylation, akin to ubiquitination, represents a post­translational modification of proteins wherein neural precursor cell­expressed developmentally downregulated protein 8 (NEDD8) is modified on the substrate protein through a series of reactions. Neddylation plays a pivotal role in the growth and proliferation of animal cells. In colorectal cancer (CRC), it predominantly contributes to the proliferation, metastasis and survival of tumor cells, decreasing overall patient survival. The strategic manipulation of the NEDD8­mediated neddylation pathway holds immense therapeutic promise in terms of the potential to modulate the growth of tumors by regulating diverse biological responses within cancer cells, such as DNA damage response and apoptosis, among others. MLN4924 is an inhibitor of NEDD8, and its combined use with platinum drugs and irinotecan, as well as cycle inhibitors and NEDD activating enzyme inhibitors screened by drug repurposing, has been found to exert promising antitumor effects. The present review summarizes the recent progress made in the understanding of the role of NEDD8 in the advancement of CRC, suggesting that NEDD8 is a promising anti­CRC target.


Assuntos
Neoplasias Colorretais , Ubiquitinas , Animais , Humanos , Apoptose , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitinas/genética
11.
BMC Genomics ; 25(1): 132, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302871

RESUMO

BACKGROUND: The U-box gene family encodes E3 ubiquitin ligases involved in plant hormone signaling pathways and abiotic stress responses. However, there has yet to be a comprehensive analysis of the U-box gene family in maize (Zea mays L.) and its responses to abiotic stress. RESULTS: In this study, 85 U-box family proteins were identified in maize and were classified into four subfamilies based on phylogenetic analysis. In addition to the conserved U-box domain, we identified additional functional domains, including Pkinase, ARM, KAP and Tyr domains, by analyzing the conserved motifs and gene structures. Chromosomal localization and collinearity analysis revealed that gene duplications may have contributed to the expansion and evolution of the U-box gene family. GO annotation and KEGG pathway enrichment analysis identified a total of 105 GO terms and 21 KEGG pathways that were notably enriched, including ubiquitin-protein transferase activity, ubiquitin conjugating enzyme activity and ubiquitin-mediated proteolysis pathway. Tissue expression analysis showed that some ZmPUB genes were specifically expressed in certain tissues and that this could be due to their functions. In addition, RNA-seq data for maize seedlings under salt stress revealed 16 stress-inducible plant U-box genes, of which 10 genes were upregulated and 6 genes were downregulated. The qRT-PCR results for genes responding to abiotic stress were consistent with the transcriptome analysis. Among them, ZmPUB13, ZmPUB18, ZmPUB19 and ZmPUB68 were upregulated under all three abiotic stress conditions. Subcellular localization analysis showed that ZmPUB19 and ZmPUB59 were located in the nucleus. CONCLUSIONS: Overall, our study provides a comprehensive analysis of the U-box gene family in maize and its responses to abiotic stress, suggesting that U-box genes play an important role in the stress response and providing insights into the regulatory mechanisms underlying the response to abiotic stress in maize.


Assuntos
Ubiquitina-Proteína Ligases , Zea mays , Zea mays/metabolismo , Filogenia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Perfilação da Expressão Gênica , Estresse Fisiológico/genética , Ubiquitinas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Família Multigênica
12.
Microbiol Spectr ; 12(3): e0365823, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38323828

RESUMO

The internal ribosome entry site (IRES) element constitutes a cis-acting RNA regulatory sequence that recruits the ribosomal initiation complex in a cap-independent manner, assisted by various RNA-binding proteins and IRES trans-acting factors. Foot-and-mouth disease virus (FMDV) contains a functional IRES element and takes advantage of this element to subvert host translation machinery. Our study identified a novel mechanism wherein RALY, a member of the heterogeneous nuclear ribonucleoproteins (hnRNP) family belonging to RNA-binding proteins, binds to the domain 3 of FMDV IRES via its RNA recognition motif residue. This interaction results in the downregulation of FMDV replication by inhibiting IRES-driven translation. Furthermore, our findings reveal that the inhibitory effect exerted by RALY on FMDV replication is not attributed to the FMDV IRES-mediated assembly of translation initiation complexes but rather to the impediment of 80S ribosome complex formation after binding with 40S ribosomes. Conversely, 3Cpro of FMDV counteracts RALY-mediated inhibition by the ubiquitin-proteasome pathway. Therefore, these results indicate that RALY, as a novel critical IRES-binding protein, inhibits FMDV replication by blocking the formation of 80S ribosome, providing a deeper understanding of how viruses recruit and manipulate host factors. IMPORTANCE: The translation of FMDV genomic RNA driven by IRES element is a crucial step for virus infections. Many host proteins are hijacked to regulate FMDV IRES-dependent translation, but the regulatory mechanism remains unknown. Here, we report for the first time that cellular RALY specifically interacts with the IRES of FMDV and negatively regulates viral replication by blocking 80S ribosome assembly on FMDV IRES. Conversely, RALY-mediated inhibition is antagonized by the viral 3C protease by the ubiquitin-proteasome pathway. These results would facilitate further understanding of virus-host interactions and translational control during viral infection.


Assuntos
Vírus da Febre Aftosa , Animais , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ligação a RNA/genética , Ribossomos/genética , Endopeptidases/metabolismo , Sítios Internos de Entrada Ribossomal , Proteases Virais 3C , Ubiquitinas/genética , Ubiquitinas/metabolismo
13.
Int J Biol Sci ; 20(4): 1180-1193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385083

RESUMO

Chemoresistance is an obstacle of improving pancreatic cancer (PC) prognosis. However, the biological function of ISG15 in PC and whether it correlates with the resistance to chemotherapy are still unknown. Here, we aimed to reveal the clinical significance of ISG15 in PC and its regulatory mechanism in cancer progression and resistance to therapy. The level of ISG15, a protein involved in post-translational modifications, is elevated in PC tissues. Clinically, higher ISG15 expression correlates with higher PC grades, stronger resistance to treatment and poorer prognosis. Moreover, ISG15 promotes the proliferation, migration, invasion, colony formation of PC cells and resistance to Gemcitabine, a classic chemotherapeutics for PC, both in vitro and in vivo. ISG15 promotes progression and resistance to therapy in PC cells by binding to ATG7, reducing its degradation, and thereby leading to enhanced autophagy in PC cells. ISG15 may be used as both a potential diagnosis marker and sensitizer for chemotherapeutics such as Gemcitabine during PC intervention.


Assuntos
Gencitabina , Neoplasias Pancreáticas , Humanos , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Citocinas/genética , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ubiquitinas/genética , Ubiquitinas/farmacologia , Ubiquitinas/uso terapêutico
14.
BMC Genomics ; 25(1): 10, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166714

RESUMO

BACKGROUND: Plant U-box (PUB) E3 ubiquitin ligases have vital effects on various biological processes. Therefore, a comprehensive and systematic identification of the members of the U-box gene family in potato will help to understand the evolution and function of U-box E3 ubiquitin ligases in plants. RESULTS: This work identified altogether 74 PUBs in the potato (StPUBs) and examined their gene structures, chromosomal distributions, and conserved motifs. There were seventy-four StPUB genes on ten chromosomes with diverse densities. As revealed by phylogenetic analysis on PUBs within potato, Arabidopsis, tomato (Solanum lycopersicum), cabbage (Brassica oleracea), rice (Oryza sativa), and corn (Zea mays), were clustered into eight subclasses (C1-C8). According to synteny analysis, there were 40 orthologous StPUB genes to Arabidopsis, 58 to tomato, 28 to cabbage, 7 to rice, and 8 to corn. In addition, RNA-seq data downloaded from PGSC were utilized to reveal StPUBs' abiotic stress responses and tissue-specific expression in the doubled-monoploid potato (DM). Inaddition, we performed RNA-seq on the 'Atlantic' (drought-sensitive cultivar, DS) and the 'Qingshu NO.9' (drought-tolerant cultivar, DT) in early flowering, full-blooming, along with flower-falling stages to detect genes that might be involved in response to drought stress. Finally, quantitative real-time PCR (qPCR) was carried out to analyze three candidate genes for their expression levels within 100 mM NaCl- and 10% PEG 6000 (w/v)-treated potato plantlets for a 24-h period. Furthermore, we analyzed the drought tolerance of StPUB25 transgenic plants and found that overexpression of StPUB25 significantly increased peroxidase (POD) activity, reduced ROS (reactive oxygen species) and MDA (malondialdehyde) accumulation compared with wild-type (WT) plants, and enhancing drought tolerance of the transgenic plants. CONCLUSION: In this study, three candidate genes related to drought tolerance in potato were excavated, and the function of StPUB25 under drought stress was verified. These results should provide valuable information to understand the potato StPUB gene family and investigate the molecular mechanisms of StPUBs regulating potato drought tolerance.


Assuntos
Arabidopsis , Solanum tuberosum , Ubiquitina-Proteína Ligases/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Resistência à Seca , Filogenia , Secas , Ubiquitinas/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
15.
STAR Protoc ; 5(1): 102843, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38294909

RESUMO

Ubiquitin-like protein ISG15 plays an important role in an array of cellular functions via its covalent attachment to target proteins (ISGylation). Here, we present a protocol for the identification of ISGylated proteins that avoids the caveats associated with ISG15 overexpression and minimizes the likelihood of false positives. We describe steps for the tagging of endogenous ISG15, followed by genotyping and clone selection. We then detail steps for ISGylation induction, the isolation of ISGylated proteins, and their identification via quantitative mass spectrometry. For complete details on the use and execution of this protocol, please refer to Wardlaw and Petrini.1.


Assuntos
Citocinas , Ubiquitinas , Animais , Citocinas/genética , Citocinas/metabolismo , Ubiquitinas/genética , Ubiquitinas/química , Ubiquitinas/metabolismo , Linhagem Celular , Mamíferos/metabolismo
16.
Virus Res ; 341: 199326, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253259

RESUMO

BACKGROUND: PreS1-binding protein (PreS1BP), recognized as a nucleolar protein and tumor suppressor, influences the replication of various viruses, including vesicular stomatitis virus (VSV) and herpes simplex virus type 1 (HSV-1). Its role in hepatitis B virus (HBV) replication and the underlying mechanisms, however, remain elusive. METHODS: We investigated PreS1BP expression levels in an HBV-replicating cell and animal model and analyzed the impact of its overexpression on viral replication metrics. HBV DNA, covalently closed circular DNA (cccDNA), hepatitis B surface antigen (HBsAg), hepatitis B core antigen (HBcAg), and HBV RNA levels were assessed in HBV-expressing stable cell lines under varying PreS1BP conditions. Furthermore, co-immunoprecipitation and ubiquitination assays were used to detect PreS1BP- hepatitis B virus X protein (HBx) interactions and HBx stability modulated by PreS1BP. RESULTS: Our study revealed a marked decrease in PreS1BP expression in the presence of active HBV replication. Functional assays showed that PreS1BP overexpression significantly inhibited HBV replication and transcription, evidenced by the reduction in HBV DNA, cccDNA, HBsAg, HBcAg, and HBV RNA levels. At the molecular level, PreS1BP facilitated the degradation of HBx in a dose-dependent fashion, whereas siRNA-mediated knockdown of PreS1BP led to an increase in HBx levels. Subsequent investigations uncovered that PreS1BP accelerated HBx protein degradation via K63-linked ubiquitination in a ubiquitin-proteasome system-dependent manner. Co-immunoprecipitation assays further established that PreS1BP enhances the recruitment of the proteasome 20S subunit alpha 3 (PSMA3) for interaction with HBx, thereby fostering its degradation. CONCLUSIONS: These findings unveil a previously unidentified mechanism wherein PreS1BP mediates HBx protein degradation through the ubiquitin-proteasome system, consequentially inhibiting HBV replication. This insight positions PreS1BP as a promising therapeutic target for future HBV interventions. Further studies are warranted to explore the clinical applicability of modulating PreS1BP in HBV therapy.


Assuntos
Vírus da Hepatite B , Hepatite B , Animais , Humanos , Vírus da Hepatite B/genética , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Proteólise , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Células Hep G2 , Proteínas Virais Reguladoras e Acessórias/genética , DNA Circular/metabolismo , Replicação Viral/genética , RNA/metabolismo , Ubiquitinas/genética
17.
Cytokine ; 175: 156495, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38184893

RESUMO

Individuals with Coronavirus Disease 2019 (COVID-19) may show no symptoms to moderate or severe complications. This variation may be due to differences in the strength of the immune response, including a delayed interferon (IFN) response in asymptomatic patients and higher IFN levels in severe patients. Some long non-coding RNAs (lncRNAs), as regulators of the IFN pathway, may contribute to the emergence of different COVID-19 symptoms. This study aimed to comparatively investigate the relationship between lncRNAs (eosinophil granule ontogeny transcript (EGOT), negative regulator of antiviral response (NRAV), and negative regulator of interferon response (NRIR)), alongside interferon-stimulated genes (ISGs) like ISG-15 and interferon-induced transmembrane protein 3 (IFITM3) in COVID-19 patients with asymptomatic, moderate, and severe symptoms. Buffy coat samples were collected from 17 asymptomatic, 23 moderate, 22 severe patients, and 44 healthy controls. Quantitative real-time PCR was utilized to determine the expression levels. In a comparison between COVID-19 patients and healthy individuals, higher expression levels of EGOT and NRAV were observed in severe and moderate patients. NRIR expression was increased across all patient groups. Meanwhile, ISG15 expression decreased in all patient groups, and the moderate group showed a significant decrease in IFITM3 expression. Comparing COVID-19 patient groups, EGOT expression was significantly higher in moderate COVID-19 patients compared to asymptomatic patients. NRAV was higher in moderate and severe patients compared to asymptomatic. NRIR levels did not differ significantly between the COVID-19 patient groups. ISG15 was higher in moderate and severe patients compared to asymptomatic. IFITM3 expression was significantly higher in severe patients compared to the moderate group. In severe COVID-19 patients, EGOT expression was positively correlated with NRAV levels. EGOT and NRAV showed a significant positive correlation in asymptomatic patients, and both were positively correlated with IFITM3 expression. This study suggests that EGOT, NRAV, NRIR, ISG15, and IFITM3 may serve as diagnostic biomarkers for COVID-19. The lncRNA NRAV may be a good biomarker in a prognostic panel between asymptomatic and severe patients in combination with other high-sensitivity biomarkers. EGOT, NRAV, and ISG15 could also be considered as specific biomarkers in a prognostic panel comparing asymptomatic and moderate patients with other high-sensitivity biomarkers.


Assuntos
COVID-19 , RNA Longo não Codificante , Humanos , Biomarcadores , COVID-19/genética , Citocinas/genética , Citocinas/metabolismo , Interferons/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Ubiquitinas/genética , Ubiquitinas/metabolismo
18.
Biotechnol J ; 19(1): e2300263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009259

RESUMO

Ultrasound has been used in biosample disruption such as disruption of algal cell and DNA. New structure of ultrasonic biosample disruptor (UBD) needs to be explored to increase the energy efficiency. In this study, an UBD with two triangular teeth on the bottom radiation face of the water tank has been proposed, to concentrate the acoustic energy into the slot between the two neighboring triangular teeth, in order to raise the acoustic energy utilization and fragmentation performance. The acoustic energy concentration into the slot is verified by the FEM computation, and the improvement of fragmentation performance is experimentally confirmed with spirulina and tribonema, compared to the traditional UBD which has a flat radiation face. The number proportion of fragment in the length range of 10-20 µm generated by the UBD proposed in this work is 17.08% and 10.82% more than that generated by the traditional UBD for the two samples, respectively. Besides, the UBD proposed in this work has a much smaller standard deviation of DNA fragment length (47 bp) than the traditional UBD (249 bp), with a similar mean length of fragments. Moreover, the maximum weight proportion of fragment in the range of 100-300 bp, generated by the UBD proposed in this work, is 71.4%.


Assuntos
Ubiquitinas , Ultrassom , Ubiquitinas/genética , DNA
19.
Tohoku J Exp Med ; 262(2): 75-84, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-37880130

RESUMO

Recent studies have reported a correlation between ubiquitination or deubiquitination and cancer development. But mechanisms underlying the roles of genes associated with E3 ubiquitin ligases and deubiquitinating enzymes (DUB) in liver cancer remain to be explored. We analyzed and screened differentially expressed genes related to E3 ubiquitin ligases and DUB in liver cancer on the basis of public databases. Cluster analysis was utilized to classify liver cancer samples into different subtypes. Survival analysis, immune analysis, and pathway enrichment analysis were performed on the subtypes. We constructed a protein-protein interaction network using STRING to screen hub genes. Finally, we used the Connectivity Map (CMap) database to predict targeted small molecules. The results show that a total of 139 differentially expressed E3/DUB genes in liver cancer were screened. Then, liver cancer was classified into two subtypes, cluster 1 and cluster 2, based on E3-related and DUB-related genes. Patients in cluster 1 had higher survival rates and immune levels than those in cluster 2. Four hub genes (RPSA, RPS5, RPL30, and RPL8) significantly affecting the survival of the two subtypes of liver cancer patients were identified based on cluster 1 and cluster 2. Finally, the CMap database predicted that small-molecule drugs including probenecid, dexamethasone, and etomidate may improve the prognosis of liver cancer patients. These findings may offer a reference for risk stratification studies and drug development in liver cancer.


Assuntos
Neoplasias Hepáticas , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Neoplasias Hepáticas/genética , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
20.
Diabetes ; 73(3): 474-489, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064504

RESUMO

Genome-wide association studies have identified several gene polymorphisms, including UBE2E2, associated with type 2 diabetes. Although UBE2E2 is one of the ubiquitin-conjugating enzymes involved in the process of ubiquitin modifications, the pathophysiological roles of UBE2E2 in metabolic dysfunction are not yet understood. Here, we showed upregulated UBE2E2 expression in the islets of a mouse model of diet-induced obesity. The diabetes risk allele of UBE2E2 (rs13094957) in noncoding regions was associated with upregulation of UBE2E2 mRNA in the human pancreas. Although glucose-stimulated insulin secretion was intact in the isolated islets, pancreatic ß-cell-specific UBE2E2-transgenic (TG) mice exhibited reduced insulin secretion and decreased ß-cell mass. In TG mice, suppressed proliferation of ß-cells before the weaning period and while receiving a high-fat diet was accompanied by elevated gene expression levels of p21, resulting in decreased postnatal ß-cell mass expansion and compensatory ß-cell hyperplasia, respectively. In TG islets, proteomic analysis identified enhanced formation of various types of polyubiquitin chains, accompanied by increased expression of Nedd4 E3 ubiquitin protein ligase. Ubiquitination assays showed that UBE2E2 mediated the elongation of ubiquitin chains by Nedd4. The data suggest that UBE2E2-mediated ubiquitin modifications in ß-cells play an important role in regulating glucose homeostasis and ß-cell mass.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Células Secretoras de Insulina , Camundongos , Animais , Humanos , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Estudo de Associação Genômica Ampla , Proteômica , Células Secretoras de Insulina/metabolismo , Glucose/metabolismo , Camundongos Transgênicos , Dieta Hiperlipídica/efeitos adversos , Ubiquitinas/genética , Ubiquitinas/metabolismo , Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...